Mistral AI API
API Keyโ
# env variable
os.environ['MISTRAL_API_KEY']
Sample Usageโ
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = ""
response = completion(
    model="mistral/mistral-tiny", 
    messages=[
       {"role": "user", "content": "hello from litellm"}
   ],
)
print(response)
Sample Usage - Streamingโ
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = ""
response = completion(
    model="mistral/mistral-tiny", 
    messages=[
       {"role": "user", "content": "hello from litellm"}
   ],
    stream=True
)
for chunk in response:
    print(chunk)
Usage with LiteLLM Proxyโ
1. Set Mistral Models on config.yamlโ
model_list:
  - model_name: mistral-small-latest
    litellm_params:
      model: mistral/mistral-small-latest
      api_key: "os.environ/MISTRAL_API_KEY" # ensure you have `MISTRAL_API_KEY` in your .env
2. Start Proxyโ
litellm --config config.yaml
3. Test itโ
- Curl Request
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "mistral-small-latest",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ]
    }
'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="mistral-small-latest", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
    model = "mistral-small-latest",
    temperature=0.1
)
messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)
print(response)
Supported Modelsโ
All models listed here https://docs.mistral.ai/platform/endpoints are supported. We actively maintain the list of models, pricing, token window, etc. here.
| Model Name | Function Call | Reasoning Support | 
|---|---|---|
| Mistral Small | completion(model="mistral/mistral-small-latest", messages) | No | 
| Mistral Medium | completion(model="mistral/mistral-medium-latest", messages) | No | 
| Mistral Large 2 | completion(model="mistral/mistral-large-2407", messages) | No | 
| Mistral Large Latest | completion(model="mistral/mistral-large-latest", messages) | No | 
| Magistral Small | completion(model="mistral/magistral-small-2506", messages) | Yes | 
| Magistral Medium | completion(model="mistral/magistral-medium-2506", messages) | Yes | 
| Mistral 7B | completion(model="mistral/open-mistral-7b", messages) | No | 
| Mixtral 8x7B | completion(model="mistral/open-mixtral-8x7b", messages) | No | 
| Mixtral 8x22B | completion(model="mistral/open-mixtral-8x22b", messages) | No | 
| Codestral | completion(model="mistral/codestral-latest", messages) | No | 
| Mistral NeMo | completion(model="mistral/open-mistral-nemo", messages) | No | 
| Mistral NeMo 2407 | completion(model="mistral/open-mistral-nemo-2407", messages) | No | 
| Codestral Mamba | completion(model="mistral/open-codestral-mamba", messages) | No | 
| Codestral Mamba | completion(model="mistral/codestral-mamba-latest"", messages) | No | 
Function Callingโ
from litellm import completion
# set env
os.environ["MISTRAL_API_KEY"] = "your-api-key"
tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
    model="mistral/mistral-large-latest",
    messages=messages,
    tools=tools,
    tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
    response.choices[0].message.tool_calls[0].function.arguments, str
)
Reasoningโ
Mistral does not directly support reasoning, instead it recommends a specific system prompt to use with their magistral models. By setting the reasoning_effort parameter, LiteLLM will prepend the system prompt to the request.
If an existing system message is provided, LiteLLM will send both as a list of system messages (you can verify this by enabling litellm._turn_on_debug()).
Supported Modelsโ
| Model Name | Function Call | 
|---|---|
| Magistral Small | completion(model="mistral/magistral-small-2506", messages) | 
| Magistral Medium | completion(model="mistral/magistral-medium-2506", messages) | 
Using Reasoning Effortโ
The reasoning_effort parameter controls how much effort the model puts into reasoning. When used with magistral models.
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = "your-api-key"
response = completion(
    model="mistral/magistral-medium-2506",
    messages=[
        {"role": "user", "content": "What is 15 multiplied by 7?"}
    ],
    reasoning_effort="medium"  # Options: "low", "medium", "high"
)
print(response)
Example with System Messageโ
If you already have a system message, LiteLLM will prepend the reasoning instructions:
response = completion(
    model="mistral/magistral-medium-2506",
    messages=[
        {"role": "system", "content": "You are a helpful math tutor."},
        {"role": "user", "content": "Explain how to solve quadratic equations."}
    ],
    reasoning_effort="high"
)
# The system message becomes:
# "When solving problems, think step-by-step in <think> tags before providing your final answer...
#  
#  You are a helpful math tutor."
Usage with LiteLLM Proxyโ
You can also use reasoning capabilities through the LiteLLM proxy:
- Curl Request
- OpenAI v1.0.0+
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
      "model": "magistral-medium-2506",
      "messages": [
        {
          "role": "user",
          "content": "What is the square root of 144? Show your reasoning."
        }
      ],
      "reasoning_effort": "medium"
    }'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
    model="magistral-medium-2506", 
    messages=[
        {
            "role": "user",
            "content": "Calculate the area of a circle with radius 5. Show your work."
        }
    ],
    reasoning_effort="high"
)
print(response)
Important Notesโ
- Model Compatibility: Reasoning parameters only work with magistral models
- Backward Compatibility: Non-magistral models will ignore reasoning parameters and work normally
Sample Usage - Embeddingโ
from litellm import embedding
import os
os.environ['MISTRAL_API_KEY'] = ""
response = embedding(
    model="mistral/mistral-embed",
    input=["good morning from litellm"],
)
print(response)
Supported Modelsโ
All models listed here https://docs.mistral.ai/platform/endpoints are supported
| Model Name | Function Call | 
|---|---|
| Mistral Embeddings | embedding(model="mistral/mistral-embed", input) |